The role of intervention complexity for the feasibility of scaling-up health interventions in low and middle-income countries

Christian Gericke1,2, Kent Ranson2, Christoph Kurowski2,3, Anne Mills2

1Dept of Health Care Management, Berlin University of Technology
2Health Policy Unit, London School of Hygiene and Tropical Medicine
3Human Development Network, World Bank, Washington, DC

Funded by the Disease Control Priorities Project, Fogarty International Center/NIH
Why develop a framework for intervention complexity?

- The conceptual framework

- Application of the framework: Solar water disinfection

- Potential usefulness of the framework

- Conclusions
WHY DEVELOP A FRAMEWORK FOR INTERVENTION COMPLEXITY?

To understand the role of intervention design in expanding access

– Is intervention complexity a useful criterion to complement burden of disease, cost-effectiveness, and affordability considerations?

To indicate R&D priorities for simplifying interventions

– Are there particular interventions that are easy to scale up?

– How can existing interventions be simplified to relax constraints?

To guide decisions on how to implement interventions in a specific setting

– Which characteristics of an intervention can we change to implement it here?
• Why develop a framework for intervention complexity?

• The conceptual framework

• Application of the framework: Solar water disinfection

• Potential usefulness of the framework

• Conclusions
CONCEPTUAL FRAMEWORK FOR CATEGORIZING INTERVENTIONS BY THEIR DEGREE OF COMPLEXITY

- **Intervention characteristics**
 - Basic product design
 - Supplies
 - Equipment

- **Delivery characteristics**
 - Facilities
 - Human resources
 - Communication & transport

- **Government capacity requirements**
 - Regulation/legislation
 - Management systems
 - Collaborative action

- **Usage characteristics**
 - Ease of usage
 - Pre-existing demand
 - Black market risk

- **Features**
 - Comprehensive enough to capture important constraints
 - General enough to apply to different types of interventions
 - Policy-relevant in identifying constraints and opportunities
CONCEPTUAL FRAMEWORK: THIRD LEVEL CRITERIA

Intervention characteristics

Basic product design
- Stability
- Standardisability
- Safety profile
- Ease of storage
- Ease of transport

Supplies
- Need for regular supplies

Equipment
- High-tech equipment & infrastructure needed
- Different types of equipment needed
- Maintenance needed
• Why develop a framework for intervention complexity?

• The conceptual framework

• **Application of the framework: Solar water disinfection**

• Potential usefulness of the framework

• Conclusions
DIARRHOEA IS STILL ONE OF THE THREE TOP KILLERS OF CHILDREN

- Epidemiology
 - 1.1 billion people still depend on rivers, streams, and other unsafe surface water sources for drinking water
 - Contaminated drinking water is main route of transmission of diarrhoeal diseases
 - 2.2 million people die from diarrhoea annually, mostly children

- Household water treatment and storage
 - Boiling water for 10 min, simple chlorination systems (tablets, drops)

- Solar water disinfection
 - Water filtration through charcoal and subsequent exposure to sunlight practised in India 2000 B.C.
 - Simplest application today: Storing water in transparent containers that are placed in direct sunlight
 - Two synergetic effects: UV radiation & temperature rise
Health impact in Kenyan children < 6 years
• Reduction of diarrhoea episodes by 34% (adjusted OR 0.66, 95%CI 0.5 to 0.87)
• Reduction of severe diarrhoea episodes by 35% (adjusted OR 0.65, 95%CI 0.5 to 0.86)
• Risk of contracting cholera during epidemic reduced by 88% (OR 0.12, 95%CI 0.05 to 0.26)

1. INTERVENTION CHARACTERISTICS: SODIS

Basic Product Design
- Transparent PET plastic bottles
- Process is highly standardisable. Many container types proved effective
- Excellent safety profile. Leak of chemicals has been excluded
- Water treatment & storage in same container minimises recontamination

Supplies
- No need for regular supplies

Equipment
- Plastic bottles
- Black paint
2. DELIVERY CHARACTERISTICS: SODIS

Facilities
- Plastic bottles from domestic refuse

Human Resources
- No medical knowledge needed
- Initial training, monitoring & evaluation by community development volunteers with training by development agency or NGO

Communications & Transport
- No dependency of delivery on strong communication & transport infrastructure
- In very remote rural areas, purchase & transport of used bottles from the city has to be organised
3. GOVERNMENT CAPACITY REQUIREMENTS: SODIS

- **Regulation/Legislation**: No need for regulation
- **Management Systems**: No need for sophisticated management systems
- **Collaborative Action**: Eventually some partnership requirements in promotion and information/education/communication campaigns e.g., public sector, NGOs, media
4. USAGE CHARACTERISTICS: SODIS

Ease of Usage
- Basic information/education on how to use SODIS needed.
- Best results if integrated in wider sanitation & hygiene strategy
- Some need to monitor practice and correct mistakes during first months of use

Pre-existing Demand
- Pre-existing demand is low, therefore substantial need for initial promotion.
- However, once introduced practice is sustained over years

Black Market Risk
- None.
• Why develop a framework for intervention complexity?

• The conceptual framework

• Application of the framework: Solar water disinfection

• Potential usefulness of the framework

• Conclusions
INTERVENTION COMPLEXITY CAN COMPLEMENT OTHER CRITERIA FOR PRIORITY SETTING

![Diagram showing the relationship between burden of disease, cost-effectiveness, affordability, and intervention complexity, with categories for highly feasible interventions like ORT, SODIS, New antibiotics, HAART, and Trachoma surgery.]

Highly feasible interventions: ORT, SODIS

Low cost: ORT, SODIS

High cost: HAART, Trachoma surgery

Low intervention complexity: New antibiotics, SODIS

High intervention complexity: HAART, Trachoma surgery
NON-CONVENTIONAL WAYS TO SCALE-UP INTERVENTIONS IDENTIFIED IN LITERATURE REVIEW

► Simplified technology

– Medical abortion replacing surgical abortion
– Long-lasting insecticide treated nets

► Different delivery/distribution channels

– Social marketing for condoms or insecticide-treated nets
– Use of NGOs where government capacity is weak

► Pushing down human resources requirements

– Midwifery training of traditional birth attendants
– Sticking-plaster treatment replacing trachoma surgery

► Simplified usage

– Solar water disinfection at point of consumption

• Why develop a framework for intervention complexity?

• The conceptual framework

• Application of the framework: Solar water disinfection

• Potential usefulness of the framework

• Conclusions
CONCLUSIONS

– Intervention complexity is a useful way to think about feasibility

– It complements burden of disease, cost-effectiveness, and affordability considerations

– It can help to identify R&D priorities to simplify interventions

– It can guide decisions on how to implement interventions in specific settings

Intervention complexity is a useful additional criterion for decision making on scaling-up health interventions