direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content

There is no English translation for this web page.

Classification of hospital admissions into emergency and elective care: a machine learning approach.

Krämer J, Schreyögg J, Busse R
Health Care Management Science, March 2019, Vol. 22, pp 85-105
$this->_build_link_list($this->linkCount++, "https://doi.org/10.1007/s10729-017-9423-5", "doi.org/10.1007/s10729-017-9423-5 [1]")


Rising admissions from emergency departments (EDs) to hospitals are a primary concern for many healthcare systems. The issue of how to differentiate urgent admissions from non-urgent or even elective admissions is crucial. We aim to develop a model for classifying inpatient admissions based on a patient’s primary diagnosis as either emergency care or elective care and predicting urgency as a numerical value. We use supervised machine learning techniques and train the model with physician-expert judgments. Our model is accurate (96%) and has a high area under the ROC curve (>.99). We provide the first comprehensive classification and urgency categorization for inpatient emergency and elective care. This model assigns urgency values to every relevant diagnosis in the ICD catalog, and these values are easily applicable to existing hospital data. Our findings may provide a basis for policy makers to create incentives for hospitals to reduce the number of inappropriate ED admissions.

Zusatz / Addon

  • Link zu Springer [2]
------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Copyright TU Berlin 2008